Sperm Development

(A) Cell structure: Nucleus, Mitochondrion, Golgi apparatus, Centriole, Acrosomal vesicle and granule, Flagellum.

(B) Microscope image showing a sperm cell.

(C) Detailed view of the sperm head, showing the Axoneme, Mitochondria, Centriole, Nucleus, Plasma membrane, Acrosomal vesicle, Mid-piece, Neck, Tail, End piece, and Sperm head.
Sperm Flagella

- Microtubule doublets slide past each other powered by dynein arms
- Dynein arms hydrolyze ATP
Acrosome

• Modified secretory vesicle derived from Golgi apparatus

• Sea Urchin
 • Globular actin found between nucleus and acrosome
 • Forms acrosomal process
Egg

- Filled with materials necessary for developing embryo
 - Proteins
 - Ribosomes and tRNA
 - mRNA
 - Morphogenic factors
 - Protective chemicals
Egg Stage During Sperm Entry

<table>
<thead>
<tr>
<th>Step</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary oocyte</td>
<td>The roundworm Ascaris</td>
</tr>
<tr>
<td>Germinal vesicle</td>
<td>The mesozoan Dicyema</td>
</tr>
<tr>
<td>First metaphase</td>
<td>The sponge Grantia</td>
</tr>
<tr>
<td>Female pronucleus</td>
<td>The polychaete worm Myzostoma</td>
</tr>
<tr>
<td>Second metaphase</td>
<td>The nemertean worm Cerebratulus</td>
</tr>
<tr>
<td>Polar bodies</td>
<td>The polychaete worm Chaetopterus</td>
</tr>
<tr>
<td>Meiosis complete</td>
<td>The mollusc Dentalium</td>
</tr>
<tr>
<td></td>
<td>The core worm Pectinaria</td>
</tr>
<tr>
<td></td>
<td>Many insects</td>
</tr>
<tr>
<td></td>
<td>Starfish</td>
</tr>
<tr>
<td></td>
<td>Cnidarians (e.g., anemones)</td>
</tr>
<tr>
<td></td>
<td>Sea urchins</td>
</tr>
<tr>
<td></td>
<td>The lancelet Branchiostoma</td>
</tr>
<tr>
<td></td>
<td>Amphibians</td>
</tr>
<tr>
<td></td>
<td>Most mammals</td>
</tr>
<tr>
<td></td>
<td>Fish</td>
</tr>
<tr>
<td></td>
<td>Dogs and foxes</td>
</tr>
</tbody>
</table>
Extracellular Components

- Egg jelly (some organism)
- Vitelline envelope
 - Sperm-egg recognition (species specific)
- Mammals
 - Zona pellucida (mammals)
 - Extracellular matrix between membrane and vitelline envelope
 - Cumulus cells and corona radiata
 - Follicle cells that ovulate with egg
Sea Urchin Egg
Mammalian Egg
Intracellular Components

• Cortex
 • Gel-like, stiff cytoplasm
 • Contains globular actin (homologous to actin in sperm)
• Cortical granules
 - Golgi derived (like acrosome)
 - Prevents polyspermy
 • Proteolytic enzymes
 • Mucopolysaccharides
 • Hylanin and adhesive glycoproteins
Sea Urchin Egg
Fusion of Egg and Sperm

(A) SEA URCHIN

(1) Sperm contacts jelly layer
(2) Acrosomal reaction
(3) Digestion of jelly layer
(4) Binding to vitelline envelope
(5) Fusion of acrosomal process membrane and egg membrane

(B) MOUSE

(1) Sperm activated by female reproductive tract
(2) Sperm binds zona pellucida
(3) Acrosomal reaction
(4) Sperm lyses hole in zona
(5) Sperm and egg membranes fuse
Summary of Egg Sperm Recognition

1) Chemotaxis
2) Acrosomal reaction
3) Binding
4) Passage through egg envelope
5) Fusion of membranes
Chemotaxis

• Sea Urchin
 • Resact or speract – peptides released by egg
 • Sperm have resact or speract receptors
 - Species specific
 - Binding causes increase in cGMP
 • cGMP dependent calcium channel
 - Calcium ions enter sperm from water
 - Activates turning response
 - Activates sperm respiration and mobility
Sperm Chemotaxis in Sea Urchin

(A)

(B)

(C)

(D)
Acrosome Reaction in Sea Urchin

• Sea Urchin
 • Sperm cell surface receptors bind to egg jelly polysaccharides
 - Polysaccharides are species specific
 - Prevents cross species fertilization
Activation in Sea Urchin

- Open calcium transport channel
- Activates sodium ion (in), hydrogen ion (out) pump
- Activates phospholipase (triggers IP$_3$ second messenger)
Acrosome Reaction in Sea Urchin
Acrosome Reaction in Sea Urchin

• High calcium causes:
 • Fusion of acrosome to cell membrane
 - Contents are dumped out
 • Acrosomal process formation
 - Calcium dependent RhoB causes polymerization of globular actin
 - Acrosome process extends toward egg membrane
 - Bindin proteins exposed
Acrosome Process is Species Specific

Sea Urchin
Bindin Localization in Sea Urchin

(A) DAB + H₂O
Swine anti-rabbit immunoglobulin conjugated with peroxidase enzyme
Dense precipitate
Rabbit anti-bindin
Acrosomal process
Bindin

(B) DAB precipitate

(C) Vitelline membrane of egg
Acrosomal process
Bindin Receptors (EBR1) on Egg in Sea Urchin

- EBR1 limiting factor in sperm binding
Fusion of Sperm and Egg Membranes (Sea Urchin)

- Egg produces fertilization cone
 - Globular actin polymerizes
Polyspermy

• When more than one sperm fertilized egg
 • Polyploid nucleus (two sperm enter – triploid)
 • More than two centrioles (multiple cleavage planes)
 • Causes mess! Embryo does not develop
Fast Block – Sea Urchins

• Change in membrane potential blocks sperm
 • Egg -70 mV
 – Inside negative
 – High Na+ outside egg (sea water)
 • Binding of sperm causes influx of Na+
 – Potential changes to +20 mV
 – Sperm cannot fuse at this membrane potential
 • Short lived
 – Slow block needed (cortical reaction)
Fast Block – Sea Urchins
Slow Block – Sea Urchin

- AKA – cortical reaction
- Calcium from endoplasmic reticulum is released
- Cortical granules fuse with plasma membrane
- Cortical granule contents dumped out
 - Serine protease – cuts bindin connections
 - Mucopolysaccharides – osmotically swells
 - Peroxidase – crosslinks extracellular proteins
Cortical Granule Exocytosis – Sea Urchin
Fertilization Envelope – Sea Urchin
fertilization envelope

fertilized egg

fertilization envelope excludes sperm

sperm
Calcium Release – Sea Urchin
Sea Urchin Egg Activation

- Before fertilization sea urchin egg is dormant
 - No transcription
 - No translation
 - Low metabolic activity
 - Low cellular respiration
- Fertilization removes blocks to these biochemical function
Cortical Granule

(A) Cortical Granule
(B) Labeled Calcium Release Channels

Endoplasmic Reticulum
Is it possible to block the cortical reaction?

- **EGTA**
 - Chelates calcium (binds calcium)
 - Injecting EGTA into egg inhibits:
 - Cortical reaction
 - Change in membrane potential
 - Cell division
Is it possible to induce the cortical reaction without fertilization?

- Calcium ionophore A23187
 - Allows flow of calcium ions across membrane
 - Triggers cortical reaction without fertilization
Early Response

• Activated by Cortical granule/ Ca2+ release
 – Activates NAD+ Kinase
 • Converts NAD+ to NADP+
 • NADP+ required for phospholipid synthesis
Late Response

• Activation of DNA and Protein synthesis
 – Caused by increase in pH and Ca$^{2+}$
pH Increase – Late response

• Na+/H+ exchange
 – Na+ in H+ out
 – Increases pH inside of egg
 – Diacylglycerol pathway
 – Promotes DNA synthesis
 – Artificially increasing pH has same effect
Ca$^{2+}$ Increase – Late Response

- Calcium inactivates MAP kinase
- MAP kinase inactivation removes DNA synthesis block
Activation of Translation After Fertilization

- Caused by increase in \(\text{Ca}^{2+} \) and pH
 - Protein synthesis starts with stored mRNA's
 - Actinomycin inhibits transcription
Why is stored mRNA not translated?

- Translation inhibitors bind mRNA
 - Maskin in mice
 - 4E-binding protein in sea urchins
What types of mRNA's are stored?

- mRNA's for early cleavage events
 - Histones – needed to form chromosomes
 - Tubulins – needed to form mitotic spindle
 - Actins – needed for cytokinisis
 - Morphogenetic factors – needed for embryo patterning
Cyclin B - mRNA

- Cyclin B required to pass cell cycle checkpoint
 - Blocked by 4E-binding protein
 - Cyclin B binds Cdk1 to form MPF (mitosis promoting factor)
 - Fertilization initiates mitosis
What does the sperm contribute?

- Haploid genome (half of the total chromosomes)
 - Initially very condensed
- Centrosome
 - Produces mitotic spindle
 - Most animals
What does the egg contribute?

- Haploid genome (half of the total chromosomes)
- Mitochondria
 - Mitochondrial DNA
- Cytoplasm
- Morphogenetic factors
- mRNA and proteins needed for cleavage
- Yolk - food
Fusion of Genetic Material

• Sperm and egg pronuclei must migrate toward each other and fuse.
• Both sets of chromosomes become active.
Pronuclei Migration

• Sperm chromosome decondense
 – Sperm histones replaced by egg histones
• Centrosome migrates to side of sperm pronucleus facing egg pronucleus
• Centrosome sends out microtubules
 – Integrate with egg microtubules
 – Migrate toward egg pronucleus
 – Pulls the two pronuclei together
Sperm pronucleus migrating toward egg pronucleus
Fusion of pronuclei forms zygote

- Diploid nucleus
- DNA synthesis begins either just before fusion or after fusion
Mammalian Fertilization

1. Follicle cell
2. Egg plasma membrane
3. Zona pellucida
4. Sperm nucleus
5. Acrosomal vesicle

Egg nucleus
Mammalian Fertilization

- Internal fertilization
 - Occurs in the ampulla of the oviduct
 - Both sperm and egg must travel to this location
- Early cleavage stages occur in the oviduct before implantation into uterus
How do oocytes migrate to oviduct?

- Oocytes ovulates off surface of ovary
 - Carries cumulus cells in an extracellular matrix
- Taken up by fimbriae at opening of oviduct
 - Ciliary beating draw in oocyte
- Combination of cilia and muscle contraction moves oocyte toward ampulla (site of fertilization)
How do sperm cells migrate to oviduct?

- Deposited into vagina near cervix
- Pass cervix, through uterus, into isthmus of oviduct then finally into the ampulla of oviduct
- Flagellar motion not sufficient to transport sperm to destination
 - Muscular contraction of uterus
 - Flagella most important inside oviduct
Sperm capacitation

- Capacitation – final maturation of sperm
 - Completed during trip to oviduct
 - Unblocks acrosome reaction
What are the advantages of capacitation?

- Longer time viable sperm are present.
- Increased chance of sperm meeting egg.
What changes during capacitation?

• Cholesterol removed
 – Rafting of receptor proteins on anterior end.

• Cell surface proteins and carbohydrates change
 – Unmask receptor proteins

• Eflux of potassium ions
 – Inside of sperm becomes more negative
 – Allows easier influx of Ca^{2+}

• Protein phosphorylation
 – Activates receptor proteins

• Plasma membrane and outer acrosomal membrane fuse
What is the fate of uncapacitated sperm?

- Bind to oviduct membrane in isthmus
- Slows down capacitance
- Increases longevity of sperm
Thermotaxis of sperm

- Capacitated sperm move toward warmer region of oviduct.
 - Sense temperature gradient.
 - Ampulla 2°C warmer than isthmus.
Chemotaxis of Sperm

- Oocyte and cumulus cells secrete sperm chemotactic factors.
- Capacitated sperm move toward areas with higher level of chemotactic factors.
Zona Pellucida

- Made of:
 - Three crosslinked glycoproteins
 - Polymer of ZP2 and ZP3 crosslinked by ZP1
 - Peripheral proteins
- Bind sperm and initiates acrosomal reaction
Early Stages in Sperm Binding

• Weak interaction with peripheral proteins.
• SED1 protein on sperm binds to zona protein complex.
 – Antibodies against SED1 blocks fertilization.
Final Stages in Sperm Binding

- Sperm binds to ZP3
- ZP3 crosslinks receptors and induces the acrosome reaction
ZP competition experiments

- Adding soluble ZP3 prevents fertilization
- ZP3 inactivated when carbohydrates are removed
ZP proteins and fertilization

(A) Diagram of ZP proteins: ZP1, ZP2, ZP3

(B) Graph showing sperm binding (%):
- ZP1
- ZP2
- ZP3 without carbohydrates
- ZP3
Radioactive ZP3 binds to sperm head
Induction of Acrosomal Reaction

- Crosslinking of sperm surface receptors by ZP3:
 - Activates G proteins
 - Opens calcium channels
 - Exocytosis of acrosomal vesicle
Acrosome Exocytosis

(A) Image of a sperm cell showing the acrosomal region.

(B) Diagram illustrating the process of acrosome exocytosis:
- Sperm cell membrane
- Acrosomal membrane
- Nucleus
- Centriole

Fusion between sperm cell membrane and adjacent acrosomal membrane.
Acrosomal Reaction

• Proteases released – zona proteins digested
• ZP3 shed from sperm during acrosome reaction
 – Inner acrosomal membrane now at surface of cell
 – Binds to ZP2
Gamete Membrane Fusion

• Possible mechanism
 – CD9 (integrin binding protein) on egg might interact with Izumo protein on sperm
 – CD9 or Izumo knockout mutations block binding
Prevention of Polyspermy

• No fertilization envelope

• Cortical granule reaction releases:
 – N-acetylglucosaminidase
 • N-acetylglucosamine bound to ZP3 binds to sperm
 – Protease
 • Cleave ZP2

• Sperm not bound to membrane are released
Gamete Fusion

• Actin polymerization in egg forms microvilli that reach up to sperm.
• Binding starts at equatorial domain
• Sperm pronucleus, centrosome and mitochondria taken into egg.
 – Pronucleus fuses with egg pronucleus
 – Centrosome organizes microtubules
 – Sperm mitochondria are destroyed by egg
Fusion of Genetic Material

• Takes about 12 hours
 – Sperm DNA tightly bound by protamines
 • Compacted by disulfide bonds
 • Glutathione in egg breaks disulfide bonds
 • Releases grip on DNA
 – Oocyte arrested at metaphase II
 • Calcium activates kinase
 • Results in destruction of cyclin
 • Cell cycle resumes
DNA Synthesis

• Calcium inactivates MAP kinase
 – Activates DNA synthesis in sperm and egg pronuclei
 – Sperm centrosome form aster and pulls pronuclei together
 – Mitosis starts immediately before zygote nucleus forms
Pronuclear Movements